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Abstract

Back in 1925, in the book Statistical Methods for Research Workers, Ronald Fisher defined the statistical significance
p<0.05, and today almost a hundred years later, there is a growing need to redefine this arbitrary and often
misinterpreted value indicating existence/nonexistence of differences, correlations or effects. P-value indicates that the
null hypothesis is true, i.e. the probability that the result was accidental, but it is not related to whether the alternative
hypothesis is true or false. Also, the p-value depends on sample size. The larger the sample, the smaller the associated
p-value and the higher the risk of “accidental” significance at the 5% threshold. Therefore, in certain cases, it is
suggested to use Bayesian statistics whose parameters are more informative rather than the commonly used statistical
significance (p <0.05). On the basis of various simulations, this paper proposes a tripartite standard statistical inference
approach which include Confidence Intervals (Cl), effect size, and Bayesian procedure. The p-value should be one of the
inference approaches, but not necessarily the only one. The dichotomous (yes/no) approach based on the rejection or
confirmation of a hypothesis should be replaced by a polystochastic one.
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Introduction

In March 2019, in the journal Nature 854 authors (signatories) published an article titled “Retire
statistical significance” as an appeal for eliminating the binary statistical significance decision.
Statistical significance (p-value) is treated as a boundary between good and evil, truth and lie, and
as a solution to this pervasive and ubiquitous problem signatories require other statistical
approaches and thresholds (Amrheim et al., 2019). In this paper, we will address the history of
introducing p-value, its limitations, and suggestions for overcoming them.

History

At the beginning of the last century, Karl Pearson was the first who formally introduced the p-value
in his Pearson's chi-squared test, using the chi-squared distribution and notating it with capital P
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(Pearson, 1900). However, it was Ronald Fisher (Fisher, 1925) who later developed the theory
behind the p-value and first provided the means to calculate the p-value in a great number of
situations. This theory, together with the theory of Neyman and Pearson (1933), provided
researchers with important quantitative tools to confirm or reject their hypotheses. In this paper we
will consider the application of p-values based on Fisher’'s, Nayman-Pearson’-s, and Bayesian
schools of statistical inference.

Simply put, Fisher claimed that a p-value is a measure of the probability that an observed
difference or association could have occurred just by random chance. The smaller the p-value, the
stronger the evidence against the null hypothesis of no difference or association. Fisher did not
intend to use the p-value as a decision-making instrument but to “provide researchers with a
flexible measure of statistical inference within the complex process of scientific inference”
(Kyriacou, 2016).

Later, Neyman and Pearson (1933) formalized the hypothesis testing process setting a prior value
for the rejection of the null hypothesis known as the significance level. This p-value was usually, by
convention, selected to be below .05. A p-value below .05 is conclusively determined to be
“statistically significant,” leading to the rejection of the null hypothesis. Contrary to that, if the p-
value is above .05 the null hypothesis is not rejected and is assumed to be true. Actually, the p-
value presents how incompatible our data are with a null hypothesis, but does not present at all
how incompatible our data are with an alternative hypothesis. This fact frequently causes
misleadings in inferential statistics.

This process can lead to two potential errors. The first is rejecting the null hypothesis when it is
actually true. This is known as a type | error and will occur with a frequency based on the level
selected for determining significance (a). If a is selected to be .05, then a type | error will occur 5%
of the time. The second potential error is accepting the null hypothesis when it is actually false.
This is known as type Il error. The complement of a type Il error is to reject the null hypothesis
when it is truly false.

Limitations of P-value

Reporting p-values is common in scientific publications (Cristea & loannidis, 2018). However,
nowadays it is widely recognized that p-value is very often and very easily misinterpreted.

Firstly, the problem related to p-value is its use in an all-or-nothing fashion to decide about a
statistical hypothesis (i.e., Masson, 2011; Stern, 2016). Once the researcher finds the p-valued to
be under the threshold of 0.05 the typical conclusion is that the null hypothesis is unlikely to be
true, rejects the null hypothesis, and accepts the alternative hypothesis instead. However, it is
often forgotten that the p-value is predicated on the null hypothesis being true, but it is not related
to whether the alternative hypothesis is true or false. If the p-value is less than .05 the null
hypothesis can be rejected. But this does not mean that there is a 95% probability that the
alternative hypothesis is true (Cohen, 1994). The second problem lies in a common mistake that
rejecting the null hypothesis doesn’t mean there is no effect in experimental design. In an analysis
of 406 articles, almost half of them are wrongly interpreted; nonsignificant values are interpreted
as there is no effect (Schatz et al., 2005). Further, the simple distinction between "significant" and



"non-significant" is not very reliable. For example, there is little difference between the evidence
for p-values of 0.04 and of 0.06. Rosnow and Rosenthal (1989) state: “surely, God loves the .06
nearly as much as the .05” (p. 1277).

Secondly, a p-value depends on the sample size. The larger the sample, the smaller the associated
p-value and the higher the risk of “accidental” significance at the 5% threshold (Cohen, 1990).
Inevitably, with a big enough sample size, the null hypothesis will be rejected.

Some authors suggested that the threshold p-value should be adjusted as the sample size grows
(Greene, 2003; Leamer 1978). For instance, instead of using p < 5% for claiming significance, with
large samples the threshold should be 1% or smaller, but no rules have been proposed of how to
perform this adjustment and this approach has not been used in research so far (Lin, Lucas, &
Shmueli, 2013). However, there are circumstances when there is a good reason for the significance
level to be made more stringent (1% or lower). These are the cases (usually in medical research)
where very serious negative consequences might occur if the wrong decisions are made about the
hypothesis (Cramer & Howitt, 2004).

Obviously, interpreting only a p-value is not a good approach in inferential statistics. Dunleavy and
Jeffrey (2021) also note this point in stipulating the three basic Dominant Statistical Inference
Schools: School Frequentist, Bayesian, and Likelihood. Within the frequentist approach, we ask
What should we do? and use p-values, confidence, a, b, power, Type | error, and Type Il error. The
Bayesian approach deals with the question What should | believe? and use Bayes factors, credible
intervals, prior and posterior probability. Finally, within the likelihood approach, we ask What does
the evidence say? and apply likelihood ratios, likelihood intervals, the likelihood principle, and the
law of likelihood.

What can be used instead of the p-value?

Despite the fact that many authors pointed to the common misconceptions about p-values for
more than half a century (e.g., Bakan, 1966; Rozeboom, 1960) there is still a strong over-reliance
on p-values in the scientific literature.

Due to the limitations of p-values, it has been recommended to replace (Cumming, 2014) or
supplement (Wasserstein & Lazar, 2016) p-values with alternative statistics, such as confidence
intervals, effect sizes, and Bayesian methods.

Confidence intervals

As mentioned above, interpretation of results based only on p-values can be misleading.
Furthermore, effect may not be meaningful in the real world since it might be too small to be of
any practical value.

Generally, the confidence interval is more informative than statistical significance since it provides
information about statistical significance, as well as the direction and strength of the effect
(Shakespeare et al., 2001). For example, if the level of confidence is 95 % it means we are 95 %
confident that the interval contains the population means. Cl 95% indicates that 95 out of 100
times the range of values contains the true population mean as estimated from the sample



(Anderson, 1998). Potter (1994) indicates the importance of confidence level in case our data does
not result in finding the statistically significant difference or effect. This is very important
particularly when our data are of near-borderline significance, e.g. p = 0.06.

Although CI is more informative than p-value, it does so with moderate precision at the expense of
larger sample size (Liu, 2013). Although sample size has a negative effect on the level of statistical
significance, i.e. on large samples it increases the probability of confirming statistical significance,
these large samples have a positive effect on Cl because it reduces their interval. That is why CI
with large width is not so informative. Thus, according to Cohen (1994) the width of the confidence
interval “‘provides us with the analog of power analysis in significant testing—Ilarger sample sizes
reduce the size of confidence intervals as they increase the statistical power” (p. 1002).

It should be noted that although CI seems easier to interpret than statistical significance, both
cause many misunderstandings in science so there is a need for better statistical training in
science. Lyu et al. (2020) conducted a research in China which included 1479 researchers and
students in different fields of research.. The results revealed that for significant (i.e., p < .05, CI
does not include zero) and non-significant (i.e., p > .05, Cl includes zero) conditions, most
respondents, regardless of academic degrees, research fields and stages of career, could not
interpret p-values and Cls accurately. Moreover, the majority were confident about their
(inaccurate) judgments.

Describing differences between Cl and statistical significance, du Prel et al. (2009) clarified that
statistical significance and confidence interval (Cl) are not contradictory statistical concepts, they
are complementary. Additionally, confidence intervals ensure information about statistical
significance, such as direction and strength of the effect (Shakespeare et al., 2001). Since p-value
and confidence interval provide complementary information about the statistical probability and
conclusions regarding the significance of study findings, both measures should be reported.

The Effect Size

Although a p-value can indicate differences between conditions, it cannot answer a very relevant
question about how large this difference is. This question can be answered by calculating the
“effect size”, which quantifies differences. In other words, effect size is the magnitude of the
difference between groups. Thus, in reporting results, both p-values and effect size should be
reported.

Why is reporting only a significant p-value not enough? As already mentioned, with a sufficiently
large sample, a statistical test will almost always demonstrate a significant difference. However,
although significant, very small differences are often meaningless. Unlike p-value, the effect size is
independent of sample size.

The adequate effect size for the comparison between two or several means is Cohen's d, used with
reporting t-test and ANOVA results. Effect size is calculated by dividing the difference between the
two groups by the standard deviation of one of the groups. Cohen classified effect sizes as small (d
= 0.2), medium (d = 0.5), and large (d = 0.8). Cohen d shows the real difference of arithmetic
means regardless of the measurement scale. It allows the comparison of real, practical differences



in different studies and is also suitable for meta-analyses. Glass’s delta is a version of Cohen's
effect size and is suitable for experimental designs. It represents the ratio of the uncorrected
difference of the arithmetic means of the two groups and the standard deviation of the control
group. It is necessary to know the standard deviation of the control group (d). In the case of small
samples and disproportion of the subsamples which are compared, Hedge's g (A is a good solution.

Bayes factor

One of the proposed alternatives to p-value is to use Bayesian inference. Bayesian statistics
combines observed data with prior information about phenomena in order to make inferences by
using Bayes’ theorem. Bayes’ theorem updates prior to the posterior distribution. The concept of
Bayesian is updating probabilities in case of new evidence. The concept of Bayesian inference
(Bayes’ theorem) is shown in Figure 1.
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Figure 1. Bayes™ theorem

A considerable number of researchers paid attention to Bayes’ factor as an alternative to classical
procedure (Hoijtink, van Kooten, & Hulsker, 2016; Jarosz & Wiley, 2014; Morey & Rouder, 2011;
Stern, 2016).

As already mentioned, the p-value provides information only about the probability that the null
hypothesis is true. Contrary to that, Bayesian framework allows us to quantify how much more
likely the data are under the null hypothesis (Ho) compared to the alternative hypothesis (Hl),
given a prior probability. The Bayes factor (BF) a popular implementation of Bayesian hypothesis
testing, directly addresses both the null and the alternative hypotheses and quantifies the degree
to which the data favor one of two hypotheses by considering the prior odds (Held & Ott, 2018).
When BF equals one, data provide the same evidence for both hypotheses. However, when BF is
higher than one, the null hypothesis is more probable than the alternative one. For example, if we
observed that BF 01 = 5, we could conclude that the null hypothesis is five times more likely than
the alternative (Ruiz-Ruano & Puga, 2018).
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Bayes factor between 1 and 3 indicates anecdotal evidence for HO, between 3 and 10 indicates
substantial evidence for HO. On the other hand, 1/3 and 1 indicate anecdotal evidence for H1, and
between 1/10 and 1/3 indicates substantial evidence for H1 (George Assaf & Tsionas, 2018).

The correct use of p-values and Bayesian methods will often lead to similar statistical inferences.

Research example

Small sample, larger sample and p-value

We tested differences between three groups of students, undergraduate (n=71), graduate (n=78)
and integrated undergraduate and graduate (n=63) on the dependent variable -quality of on-line
classes.

First, we performed One-way ANOVA analysis on a smaller sample of 50% randomly selected cases.
The results showed no significant difference between samples [F(2. 119) = 1.747; p = 0.179; n?
=0.03]. So, Ho was accepted and it was concluded that the three groups of students do not differ in
their assessments of the quality of on-line classes, i.e. they belong to the same population.

In the next analysis the whole sample was used. The results of the One-way ANOVA rejected Ho
[F(2. 209) = .331. p = 0.038]. This means that those subsamples of students do not belong to the
same population, i.e. there is a difference between them with respect to the quality of on-line
classes. However, is this for real?

Effect size, Eta square (n? =0.031) indicates the low real difference between subsamples on the
dependent variable. So, although we rejected Ho (p=0.038) and accepted that significant
differences exist between the three groups, these differences are small and reflect no real/practical
differences between subsamples (Table 1).

Table 1. ANOVA analyses for smaller and larger sample

undergraduates graduates integrated
M SD M SD M SD P n2
Cl Cl Cl

smaller 3.63 1.19 3.83 .92 4.06 .69 179 0.032
sample 3.22-4.04 3.54-4.12 3.82-4.30

(N=110)

larger 3.54 1.17 3.81 91 3.97 .84 .038 0.038
sample 3.26-3.81 3.60-4.01 3.76-4.18

(N=212)

When half of the sample was used (N=110), the results indicated that the p-value was ,179 so the
HO was accepted suggesting no difference between samples. Furthermore, the confidence intervals
overlapped, the fact that is usually the indication of no difference between samples.

However, when the whole sample was used the p-value was ,038 thus the HO was rejected
suggesting significant difference between samples. So, if we use only p-value as indicator of



significant difference we will conclude that these three samples are significantly different in overall
assessment of the quality of on-line classes. However, upon inspection of Table 1, it is evident that
the confidence intervals in this sample also overlapped, and effect size, Eta square d was almost
the same as in the first sample. These indicators, contrary to p-value, point to no meaningful, real
difference between the samples.

It is easy to see that adding more participants to the sample led to the smaller associated p-value
and rejection of HO, while the other two indicators (CI and effect size) did not change. Thus, using
only p-value as indication of difference can prompt some researchers to enlarge the samples in
other to “fish” for significant difference and to neglecting other indicators in this process.

In order to further inspect the data we performed Bayesian ANOVA analysis. The Bayesian results
are shown in Table 2.

Table 2. ANOVA with Bayes Factor

Dependent Sum of df Mean Square F Sig. Bayes Factor?
variable Squares

Between 6.494 2 3.247 3.331 .038 122

Groups

Within Groups 203.714 209 975

Total 210.208 211

Bayes Factor (Bf=1.22) indicates almost no evidence for either null or alternative hypothesis. BF
about value 1 puts us in a tentative situation because in this case there is no evidence for H1.
Furthermore, it is informative to see posterior mean and Confidence interval (95%Cl) presented in
Table 3.

Table 3. Bayesian Estimates of Coefficients

Parameter Posterior 95% Credible Interval

Mode Mean Variance Lower Bound Upper Bound
undergraduate 3.535 3.535 .014 3.304 3.766
graduate 3.808 3.808 .013 3.587 4.028
integrated 3.968 3.968 .016 3.723 4.213
undergraduate

and graduate

If we compare prior means (ul1=3.54; u2=3.81; u3=3.97) with posterior there is almost no difference. Additionally, 95%
Cl of prior means; ul (LB=3.26; UB=3.81); u2(LB=3.60; UB=4.01); u3 (LB=3.76; UB=4.18) are just slightly different from
posterior Cl (Table 3). Cl of mean is very informative because it indicates that we are 95% sure that the population mean
lies in this range. Ranges of Cl (lower and upper) are slightly (smaller) which indicates more precise value of the mean. A
posterior, log likelihood and prior distribution are shown in Figures 2,3 and 4.
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Figure 2. Posterior log likelihood and prior distribution of undergraduate study (sample 1)
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Figure 4. Posterior, log likelihood and prior distribution of graduate study (sample 3)

A posterior distribution is an updated prior distribution with new evidence (data), or inverse
conditional probability of the likelihood. When the prior and posterior distributions are similar
(same family) this indicates that the model/hypothesis is well set, i.e. even after
supplementing/updating the prior distribution with “new evidence” there was no large deviation in
the posterior distribution (conditional probability) compared to the prior distribution. The
differences between the posterior and prior distributions are relative to the Bayesian values. If a
posterior probability (also distribution) is similar to some adjustment on prior probability, it means
that the less confirmed adjustment determines better prior model.

Conclusion

Keeping in mind all of the abovementioned limitations, obviously there is a need to redefine the
use of the p-value. We believe that the solution is not to completely abolish the p-value, but to
extend statistical inference to the statistical areas described in the paper. We propose a tripartite
standard statistical inference approach: Statistical significance (Cl), effect size, and Bayesian
procedure. The p-value should be one of the inference approaches, but not the only one. The
dichotomous approach based on the rejection or confirmation of a hypothesis (yes/no) should be
replaced by a polystochastic one.
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Sazetak

Davne 1925. godine u knjizi Statistical Methods for Research Workers, Ronald Fisher je definirao statisticku znacajnost
p<0,05 i danas gotovo stotinu godina kasnije uocljiva je sve veca potreba redefiniranje te arbitrarno postavljene i vrlo
Cesto krivo interpretirana vrijednosti o postojanju/ nepostojanju razlika, povezanosti i u¢inaka. P-vrijednost ukazuje na to
da je nul-hipoteza toc¢na, tj. na vjerojatnost da je rezultat slu¢ajno dobiven, ali ne odgovara na pitanja je li alternativna
hipoteza to¢na ili neto¢na. Takoder, p-vrijednost ovisi o veli¢ini uzorka. Sto je uzorak vedi to je p-vrijednost manja a time
i je vedi rizik “slucajne” znacajnosti na razini od 5%. Na temelju razli¢itih simulacija, u ovom radu se predlaze tripartitni
standard statistickog zakljuc¢ivanja koji ukljuuje intervale pouzdanosti (Cl), veli¢inu ucinka i bajezijansku proceduru. P-
vrijednost moze biti jedan od inferencijalnih pristupa, ali ne i jedini. Dihotomni (da/ne) pristup temeljen na prihvacanju ili
odbacivanju hipoteze treba zamijeniti polistohastickim pristupom.
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